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This paper deals with the dynamic response of Reissner}Mindlin plates exposed to
thermomechanical loading and resting on a Pasternak-type elastic foundation. The
mechanical loads consist of transverse partially distributed impulsive loads and in-plane
edge loads while the temperature "eld is assumed to exhibit a linear variation through the
thickness of the plate. The formulations are based on the Reissner}Mindlin plate theory,
considering the "rst order shear deformation e!ect and including the plate}foundation
interaction and thermal e!ects. The Modal Superposition Approach and State Variable
Approach are both used to determine the dynamic response of the plate. Some subset
problems such as buckling, free vibration and static bending are also discussed and the
solutions are given in closed form. The numerical illustrations concern moderately thick
plates with all four edges simply supported and resting on Pasternak-type elastic
foundations with the Winkler elastic foundations being a limiting case. E!ects of foundation
sti!ness, transverse shear deformation, plate aspect ratio, shape and duration of impulsive
load, loaded area, and initial membrane stress as well as thermal bending stress on the
dynamic response of Reissner}Mindlin plates are studied.

( 2000 Academic Press
1. INTRODUCTION

Moderately thick plates are widely used in civil engineering. A typical plate structure is the
concrete pavement of an air"eld. During their operational life, these plates are subjected to
external pressure, especially impulsive loads (such as landings of airplane), temperature "eld
(such as sunshine) and in-plane edge loads. The problem is usually simpli"ed and analyzed
as a thick rectangular plate supported by an elastic foundation. For this reason, the study of
the dynamic response of moderately thick plates under complex loading conditions and
resting on an elastic foundation is a matter of considerable importance in the design of
concrete pavements of air"elds.

Many publications have appeared in the literature on the dynamic response of isotropic
and composite laminated thick plates, e.g., Dobyns [1]. However, investigations of dynamic
response of initially stressed thick plates are very limited and most of these works are under
the loading condition of in-plane edge loads combined with transverse forces. Reismann
and Tendorf [2] gave the solution of the force motion problem of isotropic thick plates
under initial membrane stress using a Modal Superposition Approach (MSA). As pointed
out by Chen and Dawe [3], MSA relies on a transformation of the coupled set of structure
dynamic equation, written in terms of physical displacements, into an uncoupled set of
equations, written in terms of generalized displacements. Sun and Whitney [4] used MSA
to study the e!ects of initial tensile stress on the dynamic response of an in"nitely long,
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310 H.-S. SHEN E¹ A¸.
simply supported composite plate under cylindrical bending. Khdeir and Reddy [5] studied
the transient response of simply supported antisymmetric angle-ply laminated plates with
or without in-plane edge loads using a State Variable Approach (SVA). It has been shown
that MSA and SVA are e$cient techniques for dynamic analysis of the plate, but all the
above-mentioned investigations concern the plate without elastic foundations and none of
them include the thermal e!ects. Xiang et al. [6] gave solutions for the vibration problem of
initially compressive stressed isotropic thick plates resting on Pasternak-type elastic
foundations. Librescu and Lin [7] and Librescu et al. [8], respectively, studied the
non-linear vibration behavior of #at and curved panels with or without elastic foundation
and subjected to thermomechanical loading.

This paper deals with the dynamic response of Reissner}Mindlin plates exposed to
thermomechanical loading and resting on a Pasternak-type elastic foundation. The
mechanical loads consist of transverse partially distributed impulsive loads and in-plane
edge loads while the temperature "eld is assumed to exhibit a linear variation through the
thickness of the plate. The material properties are assumed to be independent of
temperature. The formulations are based on Reissner}Mindlin "rst order shear deformation
plate theory (FSDPT) and include the plate}foundation interaction and thermal e!ects. The
MSA and SVA are extended to the case of Reissner}Mindlin plates subjected to complex
loading and resting on a Pasternak-type elastic foundation. Some subset problems such as
buckling, free vibration and static bending are discussed, and the solutions are given in
closed form. Numerical examples are presented that relate to the dynamic behaviours of
simply supported moderately thick plates resting on Pasternak-type elastic foundations
form which results for Winkler foundations are obtained as a limiting case.

2. ANALYTICAL FORMULATION

2.1. GOVERNING EQUATIONS

Consider a moderately thick rectangular plate of length a, width b, and thickness h,
simply supported at four edges and resting on a Pasternak-type elastic foundation. The
plate is exposed to a stationary temperature "eld ¹(X, >, Z) and impulsive load q over
a central area a ]b , as shown in Figure 1, combined with in-plane edge loads N in the
Figure 1. A Reissner}Mindlin plate subjected to a transverse partially distributed impulsive load.

1 1 x



DYNAMIC RESPONSE OF REISSNER}MINDLIN PLATES 311
X direction and N
Y

in the > direction. As is customary [6, 7, 9}11], the foundation is
assumed to be attached to the plate and separation does not arise. The load}displacement
relationship of the foundation is assumed to be p"KM

1
=M !KM

2
+2=M , where=M is the plate

de#ection, p is the force per unit area, KM
1

is the Winkler foundation sti!ness, KM
2

is
a constant showing the e!ect of the shear interactions of the vertical elements, +2 is the
Laplace operator in X and >, W1

X
and W1

Y
are the mid-plane rotations of the normals about

the >M and XM axis respectively. tN is the time and X is the frequency.
It is postulated that the temperature "eld ¹ (X, >, Z) exhibits a linear variation through

the plate thickness, i.e.,

¹ (X, >, Z)"¹
0 A1#C

Z

h B , (1)

in which ¹
0

and C denote the temperature amplitude and gradient respectively.
The thermal moments caused by the temperature "eld ¹ (X, >, Z) are de"ned by

MM T"
Ea

1!l P
h@2

~h@2

Z¹(X, >, Z) dZ, (2)

where a is the thermal expansion coe$cient of a plate, E is Young's modulus and l is the
Poisson's ratio.

The deduction of the governing equations associated with Reissner}Mindlin "rst order
shear deformation plate theory, and including the plate}foundation interaction and thermal
e!ects, follows the same pattern in the case of its static counterpart [11], so that the motion
equations can be written as
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in which

D"

Eh3

12(1!l2)
, (I

1
, I

3
)"P

h@2

~h@2

o (1, Z2 ) dZ, (7)

D is #exural rigidity, G is shear modulus, and o is the mass density of the plate. Also, i2 is
the shear factor, which accounts for the non-uniformity of the shear strain distribution
through the plate thickness. For Reissner plate theory i2"5

6
while for Mindlin plate theory

i2"n2/12.
The stress resultants are
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If all four edges of the plate are simply supported and &&movable'', the boundary conditions
are
X"0, a:

=M "0, WM
Y
"0, MM

X
"0, (13a)

>"0, b:

=M "0, WM
X
"0, MM

Y
"0. (13b)

Introducing dimensionless quantities (in which the alternative forms k
1

and k
2

are not
needed until the numerical examples are considered),
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enables equations (3)}(5) to be written in dimensionless forms as
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and the dimensionless forms of stress resultants become
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The boundary conditions of equation (13) become

x"0, n:

="0, W
y
"0, M

x
"0, (24a)

y"0, n:

="0, W
x
"0, M

y
"0, (24b)

We expand the constant thermal bending moment in the double Fourier sine series as

MT(x, y)"
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+
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=
+
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c
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sin ix sin jy, (25)

where

c
ij
"

16MT
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(i, j"odd). (26)

Substituting equation (25) into equation (24), the homogeneous forms of boundary
conditions can be obtained.

2.2. MODAL SUPERPOSITION APPROACH (MSA)

It is assumed that the solutions of equation (15)}(17) have the forms [2}4]
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Substituting equation (27) into equations (15)}(17) yields

=
+

m/1

=
+
n/1

3
+

p/1

[¹G (p)
mn

(t)#(u(p)
mn

)2¹(p)
mn

(t)]h2=(p)
mn

(x, y)!j
q
"0, (28)

=
+

m/1

=
+
n/1

3
+
p/1

[¹G (p)
mn

(t)#(u(p)
mn

)2¹(p)
mn

(t)]W(p)
xmn

(x, y)#
16MT

n2

=
+

i/1,3

=
+

j/1,3

cos ix sin jy

j
"0, (29)

=
+

m/1

=
+
n/1

3
+

p/1

[¹G (p)
mn

(t)#(u(p)
mn

)2¹(p)
mn

(t)]W(p)
ymn

(x, y)#
16bMT

n2

=
+

i/1,3

=
+

j/1,3

cos ix sin jy

i
"0, (30)



DYNAMIC RESPONSE OF REISSNER}MINDLIN PLATES 315
in which a superposed dot indicates di!erentiation with respect to time. It is noted that,
because of equations (A3) and (A4),=(p)

mn
(x, y), W(p)

xmn
(x, y) and W(p)

ymn
(x, y) are dependent on

foundation sti!ness K
1

and K
2
.

Multiplying equation (28) by=(q)
kl

(x, y), equation (29) by W(q)
xkl

(x, y), and equation (30) by
W(q)

jkl
(x, y), respectively, and then adding all these three equations and integrating over the

plate area, we may drop the summation by the orthogonality condition (see Appendix A),
and obtain
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Zero initial conditions are assumed, i.e.,
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from equation (31), we can obtain
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Substituting equation (34) into equation (27),=(x, y, t), W
x
(x, y, t) and W

y
(x, y, t) can be

obtained.

2.3. STATE VARIABLE APPROACH (SVA)

Following Khdeir and Reddy [5, 16, 17] the solutions of equations (15)}(17) are assumed
to have the forms
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In equations (36)}(38) and (45) below, a
ij
(i, j"1, 2, 3) is taken from equation (A4) in

Appendix A. Let
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Using the same procedure as in references [5, 16, 17], the solution of equation (35) can be
obtained as

Z(t)"P
t

0

eA(t~q)b(q) dq. (42)
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2.4. SUBSET PROBLEMS

2.4.1. Buckling problem

If q"0, ¹
0
"0, and in-plane loads are compressive edge loads and N

y
"sN

x
, where s is

a constant (this means that the compressive loads in the X and > directions vary
proportionally), then the buckling load parameter can be written as

(j
x
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2
(m2#n2b2)][1#c(m2#n2b2)]

(m2#sn2b2)[1#c(m2#n2b2)]
. (43)

Solution (43) is in accordance with that of Shen [9].

2.4.2. Free vibration problem

Neglecting the transverse impulsive loads and thermal loads, this problem degenerates to
the vibration problem as previously reported in Xiang et al. [6]. The three frequencies can
be explicitly calculated as
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12
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).

Solution (44) is in accordance with that of Xiang et al. [6].

2.4.3. Static bending problem

If q is a static pressure, then the bending problem of simply supported, moderately thick
plates subjected to combined mechanical and thermal loads and resting on Pasternak-type
foundations is now considered. The explicit form of solution is as follows:
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where

b
3
"m2#n2b2,

b
4
"j

x
(m2#sn2b2)/b2,

b
5
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3
[b

3
(1#cK

2
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4
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2
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4
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1
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3. NUMERICAL EXAMPLES AND COMMENTS

A dynamic analysis has been presented for a simply supported Reissner}Mindlin plate
subjected to thermomechanical loading and resting on a Pasternak-type elastic foundation.
A number of examples were solved to illustrate their application to the performance of
moderately thick plates resting on Winkler or Pastenak-type elastic foundations. For all of
the examples, E"3)5]104 MN/m2, l"0)15, a"1)0]10~5/3C, o"2500 kg/m3, and the
transverse shear correction factor was considered to be i2"n2/12. The impulsive pressure
q(X, >, tN )"q

0
F (tN ) f (X, >) is applied on the top surface of the plate, in which q

0
is the

maximum amplitude f (X, >) is a unit function in space domain and F (tN ) is a unit function in
time domain which can be any one of the types listed in Table 1.

The convergence study of MSA and SVA used herein is demonstrated in Table 2. For this
purpose, square plates with b/h"10 subjected to a suddenly applied central patch load
(a

1
/a"b

1
/b"0)5) combined with in-plane uniaxial compression with or without initial

thermal bending stress and resting on a Pasternak-type elastic foundation with
(k

1
, k

2
)"(2)0, 1)0), are considered. The results indicate that the convergence is attained by

taking m and n up to 25 for the case of absence of initial thermal bending stress; in contrast,
m and n will be taken up to 35 when initial thermal bending stress is present.

As part of the validation of the present method, the dimensionless central de#ections and
bending moments of a simply supported rectangular plate, subjected to a uniform step load
over a central patch area alone and without an elastic foundation, are compared in Figure
2 with the three dimensional solutions of Reismann and Lee [18] and "nite element results
of Reddy [19], using their computing data E"1)0, l"0)3, o"1)0, a/b"J2, b/h"5. In
Figure 2, the solutions of classical plate theory (CPT) are also shown. The dimensionless
frequencies, de#ections and bending moments of initially stressed, moderately thick
rectangular plates subjected to a step load and without an elastic foundation are calculated
and compared in Table 3 and Figure 3 with MSA solution of Reissmann and Tendorf [2]
using their computing data, i.e., l"0)3, i2"0)86, a/h"10, b/a"J2, a

1
/a"0)2,

b
1
/b"0)141. In addition, for the static thermal bending problem of foundationless plates,

the central de#ections, bending moments and shear forces at the edges are calculated and
compared in Table 4 with the results given in Irschik and Pachinger [20]. The computing
data are b/a"1)5, l"0)3, h/a"0)1 and 0)3, respectively. These three comparisons show
that the present results agree well with the comparator solutions.

A parametric study intended to supply information on the dynamic behaviors of
a moderately thick plate subjected to themromechanical loading and resting on an elastic
foundation was undertaken. The typical results are shown in Figures 4}12. It is mentioned
that in all these "gures tNJE/o/b, =M Eah/q

0
b3, MM

x
a2/q

0
b2h2 represent the dimensionless

forms of, respectively, time, central de#ection and bending moment of the plate, i.e., at the
point (X, >)"(a/2, b/2).

Figure 4 shows central de#ection and bending moment as functions of time for an initially
stressed thick square plate subjected to a suddenly applied central patch load and resting on



TABLE 1

¹he various kinds of pulse shapes of transverse impulsive loads
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TABLE 2

Convergence study of center de-ection and bending moment for a square moderately thick plate (b"1)0, b/h"10)0, a
1
/a"b

1
/b"0)5,

N
X
/(N

X
)
cr
"!0)25, ¹

0
"303C, c"5)0, (k

1
, k

2
)"(2)0, 1)0), =I "=M Eah/q

0
b3, MI

X
"MM

X
a2/q

0
b2h2 )

tNJE/o/b MSA SVA

2 4 6 8 10 2 4 6 8 10

m,
c"0

=I 1)4020 3)2821 2)5515 0)4442 0)4388 1)4020 3)2821 2)5515 0)4442 0)4388
n MI

X
1)4660 3)3783 2)6477 0)5390 0)4058 1)4659 3)3782 2)6473 0)5387 0)4061

Up to =I 1)4709 3)4364 2)6598 0)4523 0)4549 1)4709 3)4364 2)6598 0)4523 0)4549
13

c"5)0
MI

X
1)3433 3)4221 2)4947 0)3739 0)2549 1)3433 3)4224 2)4947 0)3744 0)2553

m,
c"0

=I 1)4021 3)2820 2)5514 0)4441 0)4385 1)4021 3)2820 2)5514 0)4441 0)4385
n MI

X
1)4687 3)3802 2)6472 0)5372 0)3998 1)4691 3)3800 2)6474 0)5377 0)4003

Up to
c"5)0

=I 1)4710 3)4365 2)6597 0)4522 0)4543 1)4710 3)4365 2)6597 0)4521 0)4543
17 MI

X
1)3540 3)4218 2)4916 0)3714 0)2502 1)3539 3)4218 2)4918 0)3718 0)2516

m, =I 1)4023 3)2821 2)5515 0)4442 0)4386 1)4023 3)2821 2)5515 0)4443 0)4386
n

c"0
MI

X
1)4730 3)3803 2)6482 0)5401 0)4012 1)4734 3)3800 2)6482 0)5403 0)4014

Up to
c"5)0

=I 1)4711 3)4366 2)6598 0)4521 0)4543 1)4711 3)4366 2)6598 0)4521 0)4542
19 MI

X
1)3422 3)3963 2)4726 0)3601 0)2509 1)3421 3)3963 2)4727 0)3606 0)2511

m,
c"0

=I 1)4023 3)2821 2)5515 0)4442 0)4385 1)4023 3)2821 2)5515 0)4442 0)4385
n MI

X
1)4713 3)3784 2)6475 0)5384 0)4002 1)4715 3)3779 2)6479 0)5383 0)4004

Up to
c"5)0

=I 1)4711 3)4365 2)6597 0)4521 0)4543 1)4711 3)4365 2)6597 0)4521 0)4543
21 MI

X
1)3583 3)4095 2)4706 0)3661 0)2664 1)3584 3)4098 2)4709 0)3653 0)2680

m,
c"0

=I * * * * * * * * * *

n MI
X

1)4717 3)3789 2)6477 0)5384 0)3992 1)4727 3)3786 2)6482 0)5400 0)4018
Up to c"5)0 =I 1)4711 3)4365 2)6597 0)4521 0)4543 1)4711 3)4365 2)6597 0)4522 0)4543
25 MI

X
1)3561 3)3987 2)4783 0)3476 0)2670 1)3559 3)3992 2)4774 0)3463 0)2698

m, =I * * * * * * * * * *

n c"0 MI
X

* * * * * 1)4724 3)3783 2)6480 0)5401 0)4015
Up to

c"5)0 =I * * * * * * * * * *

29 MI
X

1)3565 3)4058 2)4706 0)3584 0)2509 1)3449 3)4017 2)4591 0)3467 0)2502

m,
c"0

=I * * * * * * * * * *

n MI
X

* * * * * * * * * *

Up to
c"5)0

=I * * * * * * * * * *

33 MI
X

1)3554 3)4096 2)4689 0)3575 0)2583 1)3556 3)4104 2)4680 0)3536 0)2604

m,
c"0

=I * * * * * * * * * *

n MI
X

* * * * * * * * * *

Up to
c"5)0

=I * * * * * * * * * *

35 MI
X

1)3550 3)3950 2)4682 0)3567 0)2569 1)3450 3)3954 2)4683 0)3533 0)2558
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Figure 2. Comparisons of dynamic behaviors of rectangular plates under partially distributed step loads. (a)
Central de#ection versus time; (b) bending moment versus time: d, Reddy [19]; ) ) ) ), Reismann and Lee [18];**,
Present; }} } CPT.
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a Pasternak-type elastic foundation using both MSA and SVA of FSDPT, and are
compared with their classical counterparts. It can be seen that dynamic responses obtained
by MSA and SVA are identical, but CPT gives lower values of de#ection and bending
moment.

Figure 5 shows central de#ection and bending moment as functions of time for an initially
stressed thick square plate subjected to a suddenly applied central patch load and either
resting on Pasternak-type or Winkler elastic foundations or without any elastic foundation.
The sti!nesses are (k

1
, k

2
)"(2)0, 1)0) and (k

1
, k

2
)"(2)0, 0)5) for Pasternak-type elastic

foundations and (k
1
, k

2
)"(2)0, 0)0) and (k

1
, k

2
)"(1)0, 0)0) for Winkler elastic foundations

and (k
1
, k

2
)"(0)0, 0)0) for the foundationless plate. It can be seen that the foundation

sti!ness has a signi"cant e!ect on the dynamic response of the plate.
Figure 6 shows the e!ect of the #exural frequency (referred to as &&low'' in the "gure) and

the other two thickness-shear frequencies (referred to as &&medium'' and &&high'' in the "gure)
on the dynamic response of a thick square plate subjected to a suddenly applied central
patch load combined with uniaxial compressive loads with or without thermal bending
stress, when the plate is supported by a Pasternak-type elastic foundation. It can be seen
that the thickness-shear frequencies have no e!ects on the dynamic response of the plate
when there is no temperature loading. In contrast, they have small e!ects on the bending
moment when thermal load is present.

Figure 7 shows the e!ect of the pulse shape and duration on the dynamic response of an
initially stressed thick square plate under the loading condition of cases 1}5, i.e., sudden
loads, step loads, triangular loads, sine loads and exponential loads in Table 1, when the
plate is supported by a Pasternak-type elastic foundation. Here, tN

0
JE/o/b ("5)0 and 8)0)

indicates pulse duration.
Figure 8 shows the e!ect of the loaded area parameter (a

1
/a"b

1
/b"0)5, 0)7, and 1)0) on

the dynamic response of an initially stressed thick square plate subjected to a suddenly
applied load and resting on a Pasternak-type elastic foundation. Note that a

1
/a"b

1
/b"

1)0 mean uniformly distributed load over the entire plate. As expected, these results show
that the central de#ections and bending moments are decreased by decreasing the loaded
area parameter.

Figure 9 shows the e!ect of initial membrane stress on the dynamic response of a thick
square plate subjected to a suddenly applied central patch load and resting on
a Pasternak-type elastic foundation. Clearly, the in-plane loads have considerable e!ects on
the dynamic behavior of the plate, but the biaxial load ratio has less e!ect.



TABLE 3

Comparison of the frequencies for initially stressed plates

Reismann and Tendorf [2] Present
In-plane
loads m n X

mn1
aJo/E X

mn2
aJo/E X

mn3
aJo/E X

mn1
aJo/E X

mn2
aJo/E X

mn3
aJo/E

N
x
"(N

x
)
cr

1 1 0)6175 20)0699 20)4474 0)6175 20)0653 20)4426
1 3 1)5680 20)4448 21)7360 1)5667 20)4407 21)7317
1 5 3)3748 21)1745 24)0084 3)3735 21)1700 24)0047
5 1 6)0434 22)3268 27)0138 6)0180 22)2198 26)9321
5 5 7)8790 23)3246 29)5552 7)8577 23)2223 29)4811
5 10 12)5579 26)1989 36)1528 12)5447 26)1079 36)0922

10 1 15)6193 28)2397 40)1144 15)5787 27)9002 39)8946
10 20 29)3270 39)4308 61)7094 29)3152 39)1883 61)5622

N
x
"0 1 1 0)4366 20)0651 20)4428 0)4366 20)0653 20)4426

1 3 1)5060 20)4401 21)7316 1)5060 20)4402 21)7316
1 5 3)3464 21)1700 24)0044 3)3464 21)1700 24)0044
5 1 5)6353 22)2199 26)9255 5)6353 22)2198 26)9254
5 5 7)5705 23)2223 29)4745 7)5705 23)2223 29)4745
5 10 12)3667 26)1078 36)0868 12)3667 26)1079 36)0868

10 1 14)9967 27)9001 39)8761 14)9967 27)9002 39)8761
10 20 29)0002 39)1884 61)5547 29)002 39)1883 61)5548

N
x
"!0)5(N

x
)
cr

1 1 0)3087 20)0627 20)4405 0)3087 20)0653 20)4425
1 3 1)4740 20)4378 21)7294 1)4740 20)4378 21)7315
1 5 3)3322 21)1678 24)0024 3)3329 21)1700 24)0043
5 1 5)4198 22)1662 26)8811 5)4337 22)1662 26)9221
5 5 7)4115 23)1709 29)4340 7)4227 23)1709 29)4712
5 10 12)2700 26)0621 36)0538 12)2767 26)0621 36)0847

10 1 14)6754 27)7288 39)7564 14)6969 27)7288 39)8671
10 20 28)8353 39)0666 61)4773 28)8413 39)0666 61)5512
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Figure 3. Comparisons of dynamic behaviors of initially stressed moderately thick plates under suddenly
applied partially distributed loads. (a) Central de#ection versus time; (b) bending moment versus time; d,
Reismann and Tendorf [2]; **, Present; 1: N

x
"0; 2: N

x
"!0.5(N

x
)
cr
; 3: N

x
"(N

x
)
cr
.

TABLE 4

Comparison for thermal bending of a rectangular plate (b/h"1)5)

Irschik and Pachinger [20] Present

Analytical (CPT) FEM (FSDPT) (FSDPT)

h/a All 0)1 0)3 0)1 0)3

D=M
MM Ta2 AX"

a

2
, >"

b

2B 0)101 0)101 0)101 0)1008 0)1008

!

MM
x

MM T(1!l) AX"

a

2
, >"

b

2B 0)238 0)239 0)239 0)2408 0)2408

!

MM
Y

MM T(1!l) AX"

a

2
, >"

b

2B 0)762 0)764 0)763 0)7638 0)7638

aQM
X

MM T(1!l) AX"0, >"
b

2B 0)758 0)000 0)000 0)000 0)000

aQM
Y

MM T(1!l) AX"

a

2
, >"0B 1)929 0)001 0)001 0)000 0)000
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Figure 10 shows the e!ect of initial thermal bending stress (C"0)0, $1)0 and $5)0) on
the dynamic response of an initially stressed thick square plate subjected to a suddenly
applied central patch load and resting on a Pasternak-type elastic foundation. The
temperature rise ¹

0
is taken as 303C. It can be seen that, in the low-temperature case, these

curves are very nearly coincident, whereas in the high-temperature case the thermal bending
moment has a small e!ect on the curves.

Figures 11 and 12 show, respectively, plate width-to-thickness ratio b/h ("15)0, 10)0 and
5)0) and plate aspect ratio b("0)5, 1)0 and 1)5) on the dynamic response of an initially
stressed rectangular plate subjected to a suddenly applied central patch load and resting on
a Pasternak-type elastic foundation. It can be seen that the transverse shear deformation
has a signi"cant e!ect on the dynamic behavior. Also, it can be seen that the central



Figure 4. Comparisons of dynamic behaviors of a moderately thick plate obtained by various methods. (a)
Central de#ection versus time: (b) bending moment versus time (b"1)0, b/h"10)0, ¹

0
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cr
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/b"0)5): 1: CPT; 2. MSA; 3: SVA.

Figure 5. E!ect of the foundation sti!ness on dynamic behaviors of a moderately thick plate. (a) Central
de#ection versus time: (b) bending moment versus time (b"1)0, b/h"10)0, ¹
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Figure 6. E!ect of the modes on the dynamic behaviors of a moderately thick plate. (a-1,2) Central de#ection
and bending moment versus time without initial thermal bending; (b-1,2) central de#ection and bending moment
versus time with initial thermal bending (b"1)0, b/h"10)0, s"0)0, N

X
/(N

X
)
cr
"!0)25, a

1
/a"b

1
/b"0)5,

(k
1
, k

2
)"(2)0, 1)0). ¹

0
"0 and 303C respectively: 1: Low, medium, high; 2: Low; 3: Medium; 4: High.
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Figure 6. Continued.

Figure 7. E!ect of pulse shape and pulse duration on dynamic behaviors of a moderately thick plate. (a) Central
de#ection versus time; (b) bending moment versus time (b"1)0, b/h"10)0, ¹
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0
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Figure 8. E!ect of loaded area on dynamic behaviors of a moderately thick plate: (a) central de#ection versus
time; (b) bending moment versus time (b"1)0, b/h"10)0, ¹
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Figure 9. E!ect of initial membrane stress on dynamic behaviors of a moderately thick plate: (a) central
de#ection versus time; (b) bending moment versus time (b"1)0; b/h"10)0, ¹
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Figure 10. E!ect of the initial thermal bending stress on dynamic behaviors of a moderately thick plate: (a)
central de#ection versus time; (b) bending moment versus time (b"1)0, b/h"10)0, ¹
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de#ections and bending moments are increased, but the frequency is decreased by increasing
the plate aspect ratio.

In Figures 4}10 and 12, the plate width-to-thickness ratio b/h"10)0; in Figures 4}7 and
9}12, the loaded area parameter a

1
/a"b

1
/b"0)5; in Figures 4}8 and 10}12, the biaxial load

ratio s"0)0 and the initial compressive stress N
x
"!0)25(N

x
)
cr
; and in Figures 4 and 6}12

the Pasternak-type elastic foundation sti!ness is characterized by (k
1
, k

2
)"(2)0, 1)0).

4. CONCLUSIONS

Dynamic behaviour of a simply supported Reissner}Mindlin plate under complex
loading conditions and resting on a Pasternak-type elastic foundation has been studied by
using the Modal Superposition Approach and the State Variable Approach respectively.
A number of issues related to the static and dynamic behaviors of moderately thick plates
without an elastic foundation have been examined.

A parametric study of moderately thick plates resting on Winkler or Pasternak-type
elastic foundations has been carried out. The results show that the characteristics of



Figure 11. E!ect of the plate width-to-thickness ratio on dynamic behaviors of a moderately thick plate: (a)
central de#ection versus time; (b) bending moment versus time (b"1)0; ¹
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X
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/b"0)5): 1: b/h"15)0; 2: b/h"10)0; 3: b/h"5)0.

Figure 12. E!ect of the plate aspect ratio on dynamic behaviors of a moderately thick plate. (a) Central
de#ection versus time; (b) bending moment versus time (b/h"10)0, ¹
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/b"0)5, s"0)0): 1: b"0)5; 2: b"1)0; 3: b"1)5.
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dynamic behavior are signi"cantly in#uenced by foundation sti!ness, shape and duration of
impulsive load, loaded area, transverse shear deformation, plate aspect ratio as well as
initial membrane stress. In contrast, the initial thermal bending stress has rather less e!ect.
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APPENDIX A

In equations (15) and (16), ignoring external forces, the solution of free vibration of the
plate is assumed as

=
mn

(x, y, t)"=
mn

(x, y)¹
mn

(t),

W
xmn

(x, y, t)"W
xmn

(x, y)¹
mn

(t),

W
ymn

(x, y, t)"W
ymn

(x, y)¹
mn

(t), (A1)

where ¹
mn

(t)"e*umnt (i"J!1), and =
mn

(x, y), W
xmn

(x, y), W
ymn

(x, y) are the shape
functions for (m, n) modal and can be assumed to have the form

=
mn

(x, y)"=
mn

sin mx sin ny,

W
xmn

(x, y)"W
xmn

cos mx sin ny,

W
ymn

(x, y)"W
ymn

sin mx cos ny (m, n"1, 2, 3,2). (A2)
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Substituting equation (A1) into equations (15)}(17) in which the external impulsive and
thermal loads are ignored, yields the following eigenvalue problem:

C
a
11
!u2

mn
a
12

a
13

a
21

a
22
!u2

mn
a
23

a
31

a
32

a
33
!u2

mn
D G
=

mn
W

xmn
W

ymn
H"0, (A3)

where

a
11
"

(1#K
2
c#j

x
c)m2#(1#K

2
c#j

y
cb2)n2b2#K

1
c

h2c
,

a
12
"

m

h2c
, a

13
"

nb
h2c

, a
21
"

m

c
, a

22
"m2#l

1
n2b2#

1

c
, a

23
"l

2
mn b,

a
31
"

nb
c

, a
32
"a

23
, a

33
"l

1
m2#n2b2#

1

c
. (A4)

The frequency and corresponding vibration modal shape functions can be obtained by
calculating eigenvalues and eigenvectors of the coe$cient matrix of equation (A3). For each
modal shape function there exist three sequent frequencies, namely, low, medium and high
ones in which the low one represents the #exural frequency and the other two represent
thickness-shear frequencies.

Following Mindlin and Goodman [21]and Yu [22] the orthogonality condition of the
principal modes can be established as

P
n

0
P

n

0

[h2=(p)
mn

(x, y)=(q)
kl

(x, y)#W(p)
xmn

(x, y)W(q)
xkl

(x, y)#W(p)
ymn

(x, y)W(q)
ykl

(x, y) dx dy

G
"0

O0

when mOk or nOl or pOq,

when m"k and n"l and p"q,
(A5)

where m, n, l"1, 2, 3,2, p, q"1, 2, 3.
Because of equations (A3) and (A4), it is mentioned that equation (A5) has the same form

as in references [21, 22], but it contains terms in K
1

and K
2
.
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